Electronic waste is more than improperly discarded batteries. The term encompasses nearly all appliances and digital devices that have the potential to become part of a landfill, and includes kitchen accessories as well as outdated computers. Once a limited issue, the problem is no longer restricted to wealthier consumer countries. Recycling and disposing of Austin e-waste efficiently and economically is a shared goal of most large Texas cities.
The primary driving force behind this explosion in consumer electronics is improved economics that expands buying ability while keeping prices down. Most types of these devices are constantly being improved, and there is no effort made to repair the old ones that fail. There have been many sensational news stories regarding the highly toxic substances they contain, but that issue is only one part of the picture.
Inside each old appliance are a long list of precious metals. Although the old massive computer displays are gone, any new device that hosts a printed circuit automatically contains a measurable amount of gold, platinum, silver, and palladium. Elements with exotic names such as indium and gallium are important in new flat-screen display technologies, and all have comparatively high value in the recycling industry.
While it makes little sense to attempt extraction on an individual basis, large quantities of old circuit boards actually contain more precious metals than the original ores they were made from. The expensive and uncommon elements needed for operation are only a small portion of the metals used to make a new mobile device, which also contains tin and copper. Plastic housings can also be partially recycled.
The key to successful recycling is profitability. It can be performed on smaller scales by individuals, but the most efficient operations employ numbers of people. Most centers begin by separating individual components manually, removing both processors and microchips from the original housing. The remaining fragments are then run through a specialized chipper that shreds them and makes more intense separation possible.
After being processed to complete the extraction, the purified products are then sold back to manufacturers. The industrialists benefit from this more direct method of mining, and consumers also see personal benefits in the form of a somewhat lower pricing structure. Disposal of outdated equipment in a responsible matter is incredibly important, but is only part of the overall view.
As the mound of electronic debris grows exponentially each year, recycling efforts have increased, but cannot keep pace with the enormous quantities that are being consistently created. The health hazards they pose are well-documented, and include lead and mercury poisoning. Exposed children experience developmental problems, and adults often suffer from respiratory and brain issues.
The total amount of used electronic parts worldwide is very difficult to calculate or track using current methods. The problem was created in part by economic realities, and can be solved by using the same motivations. While it is important to remind populations about the physical health hazards of non-recycling, the best long-term solution is the continued development of industries that thrive on processing e-waste.
The primary driving force behind this explosion in consumer electronics is improved economics that expands buying ability while keeping prices down. Most types of these devices are constantly being improved, and there is no effort made to repair the old ones that fail. There have been many sensational news stories regarding the highly toxic substances they contain, but that issue is only one part of the picture.
Inside each old appliance are a long list of precious metals. Although the old massive computer displays are gone, any new device that hosts a printed circuit automatically contains a measurable amount of gold, platinum, silver, and palladium. Elements with exotic names such as indium and gallium are important in new flat-screen display technologies, and all have comparatively high value in the recycling industry.
While it makes little sense to attempt extraction on an individual basis, large quantities of old circuit boards actually contain more precious metals than the original ores they were made from. The expensive and uncommon elements needed for operation are only a small portion of the metals used to make a new mobile device, which also contains tin and copper. Plastic housings can also be partially recycled.
The key to successful recycling is profitability. It can be performed on smaller scales by individuals, but the most efficient operations employ numbers of people. Most centers begin by separating individual components manually, removing both processors and microchips from the original housing. The remaining fragments are then run through a specialized chipper that shreds them and makes more intense separation possible.
After being processed to complete the extraction, the purified products are then sold back to manufacturers. The industrialists benefit from this more direct method of mining, and consumers also see personal benefits in the form of a somewhat lower pricing structure. Disposal of outdated equipment in a responsible matter is incredibly important, but is only part of the overall view.
As the mound of electronic debris grows exponentially each year, recycling efforts have increased, but cannot keep pace with the enormous quantities that are being consistently created. The health hazards they pose are well-documented, and include lead and mercury poisoning. Exposed children experience developmental problems, and adults often suffer from respiratory and brain issues.
The total amount of used electronic parts worldwide is very difficult to calculate or track using current methods. The problem was created in part by economic realities, and can be solved by using the same motivations. While it is important to remind populations about the physical health hazards of non-recycling, the best long-term solution is the continued development of industries that thrive on processing e-waste.
No comments:
Post a Comment